
Behavior Analysis Using Unsupervised Anomaly
Detection

Markus Goldstein, Seiichi Uchida
Kyushu University, Fukuoka, Japan

{goldstein, uchida}@ait.kyushu-u.ac.jp

Abstract—The detection of anomalous behavior in log and
sensor data is an often requested task for many data mining
applications. If there are no labels available in the dataset as in
many real-world setups, unsupervised anomaly detection would
be the method of choice. Since these algorithms are not directly
applicable on the data in general, an appropriate transformation
has to be performed first. This paper describes how such “data
views” could be generated with respect to the detection goal.
It is also shown how contexts and associated events are taken
into account correctly when creating the data view. Furthermore,
a comparative evaluation of 11 different unsupervised anomaly
detection algorithms on standardized datasets reveal useful strate-
gies for selecting an appropriate algorithm. Finally, a real-world
example of anomaly detection in power consumption data proves
the usefulness of the presented methodology.

I. INTRODUCTION

The detection of suspicious activities in log or sensor data is
an often requested analysis procedure in many application do-
mains. In particular, such applications include network intrusion
detection, credit card and payment fraud detection, data leakage
prevention, monitoring complex systems, medical data analysis,
and many others. All of these very different domains have
in common that the goal is often similar: rare events, which
deviate from the norm, should be found. The most common
term for this procedure is anomaly detection, but according to
the application domain, often synonyms are used as well. This
includes the terms fraud detection, outlier detection, misuse
detection and also behavior analysis. Although there is no clear
and commonly agreed definition, the term behavior analysis
already might imply that an anomaly could comprise of more
than just a single event. From an algorithmic perspective,
anomaly detection algorithms are meant to detect single events
only.

This paper describes how to bridge this semantic gap. For
this reason, a few formal definitions are given first. Then, the
generation of an appropriate data representation called data
view for a given behavior analysis task is presented. Addition-
ally, a comparative analysis of different unsupervised anomaly
detection algorithms supports to select proper algorithms for
practical behavior analysis tasks. Finally, a behavior analysis of
real-world power consumption sensor data shows the relevance
of the presented work.

II. CATEGORIZING ANOMALY DETECTION TASKS

Categorizing an anomaly detection task is a very important
first step in order to select a proper data view and a suitable

algorithm [1]. In the following, we use the categorization of [2]
and [3]. In this context, anomalies are often defined by having
two important characteristics:

1) Anomalies are different with respect to their feature
values compared to normal data instances, and

2) In a dataset, the total amount of anomalies is much lower
compared to the occurrence of normal instances.

The latter characteristic rises the question, how large the
percentage of outliers should be at most. Unfortunately this
is not easy to answer due to the fact that multiple algorithmic
setup exist with respect to the availability of labels. One rule
of thumb says that there should be not more that 5% of
outliers in a dataset [3]. However, this rule is very important
in unsupervised anomaly detection, somehow important when
dealing with semi-supervised anomaly detection and could even
be neglected when using supervised anomaly detection. These
three different learning scenarios are explained in the following.

A. Availability of Labels

One main criterion for selecting a proper anomaly detection
algorithm depends on the availability of labels of the dataset
to be processed. If labels are present in the dataset for both,
normal instances and anomalies, supervised anomaly detection
can be used. If a dataset only contains instances labeled as
normal, a semi-supervised approach can be used. If no labeling
information is available at all, typically unsupervised anomaly
detection is the method of choice. The three different anomaly
detection modes are illustrated in Figure 1.

1) Supervised Anomaly Detection: Having normal and
anomalous instances in a dataset makes supervised anomaly
detection to a well-defined problem. Typically, it does not differ
much from traditional machine learning except for having a
strong prior difference of the classes. In this context, well-
known classification algorithms, such as Support Vector Ma-
chines (SVMs) [4], Artificial Neural Networks [5], Bayesian
Networks [6], or the k-nearest-neighbor algorithm could be
used. Algorithms not being able to deal with a strong class
bias, such as decision trees [7] should be avoided.

Since labeling information about anomalies are often not
available in practice, supervised anomaly detection does not
play a major role when dealing with real-world problems.

2) Semi-supervised Anomaly Detection: When only normal
data is available for training and no assumption about the
anomalies can be made, semi-supervised anomaly detection



(a) Supervised anomaly detection uses normal instances and anomalies for
training and testing.

(b) Semi-supervised anomaly detection requires solely normal data for training.
The learned model detects then deviations in the test data from that norm.

(c) Unsupervised anomaly detection uses no labeling information at all. The
algorithm only takes intrinsic information of the data into account in order to
detect anomalous instances being different from the majority.

Fig. 1. Depending on the availability of labels, a proper anomaly detection
mode has to be selected.

is the method of choice. Semi-supervised anomaly detection
algorithms are often based on the so called one-class classifi-
cation idea [8]. In this context, one-class SVMs [9], replicator
neural networks (also known as autoencoders) [10] or clustering
could be used as semi-supervised anomaly detection algorithms.
In general, also density estimation methods such as Gaussian
Mixture Models (GMMs) [11] or Kernel Density Estimation
(KDE) [12] can be used for estimating a probability density
function for normality. A very well-known application scenario
of semi-supervised anomaly detection is network intrusion
detection. Please note that anomalies, which are accidentally
present in the normal training data, may lead to a bad anomaly
detection performance. In practical applications, training data
could sometimes not be guaranteed to be anomaly free. Some
algorithms, especially density estimation approaches, might
deal better with this issue than others.

3) Unsupervised Anomaly Detection: If the dataset contains
normal data and anomalies and no labels exist at the same time,
unsupervised anomaly detection algorithms can be used. Here,
the main idea is to use intrinsic information only, for example
a density estimation of the dataset. Then, every single instance
is scored based on the density of the area it resides in. Un-
supervised anomaly detection is the most flexible methodology,
especially in practice when data has been collected and should
be analyzed without any further knowledge. On the other hand,
it is very sensitive to the input data. A proper preprocessing and
data view generation is essential for success. The remainder of
this paper focuses on this anomaly detection mode.

B. Type of Anomalies

As already mentioned previously, a semantic gap between
anomalies processable by algorithms and anomalies meant by
humans exists. Algorithms always process data such that they
detect single anomalous instances, so called point anomalies.
More complex anomalies, comprising of multiple instances

need to be converted in such a point anomaly detection problem
first.

1) Point Anomalies: Point anomalies are single instances de-
viating from the mass of instances with respect to their features.
When using an appropriate visualization, point anomalies can
be easily spotted by humans when the data has at most three
dimensions.

attribute 1

a
tt

rib
u

te
 2

x
1

x
2

x
3

c
2

c
1

c
3

Fig. 2. A two-dimensional example of a point anomaly detection problem. The
two global anomalies x1 and x2 are easily identifiable, x3 is a local anomaly
with respect to its direct neighborhood and c3 is a micro-cluster.

Figure 2 illustrates such a point anomaly detection task as
a two-dimensional example. Here, two anomalies could easily
be identified: The instances x1 and x2 deviate clearly from
the two larger clusters c1 and c2 and are also therefore called
global anomalies. The instance x3 is a local anomaly. When
looking at the whole dataset globally, x3 can be considered as
normal. However, with respect to its direct local neighborhood,
the cluster c2, it can be considered as an anomaly. The three
instances in cluster c3 are another special case: A micro-cluster
can be seen as an anomaly or as normal instances, depending on
the application scenario. The color of the instances in Figure 2
already illustrates a possible result of an anomaly detection
algorithm: Green instances should be detected as normal, red
instances as anomalies and yellow as well as orange instances
somewhere in between. This example also shows that it is in
general a good idea for the output of a good anomaly detection
algorithm to use a score instead of a class label.

2) Contextual Anomalies: For behavior analysis, the context
of instances is very important. Therefore, we can define con-
textual anomalies as anomalies, which can only be identified
within a specific context. As an example, suppose we are able
to measure the power consumption of a building. Typically, the
power usage follows the human daily routine. In this building,
a power usage of 10 kWh might be normal. However, if such



a consumption is measured in the middle of the night where
typically everybody is asleep, it might be an anomaly. Since this
anomaly is only detectable when taking the context “time” into
account, it is a contextual anomaly. In practice, many different
contexts can be used. Besides time, also IDs, for example from
users or devices are often used. Furthermore, any sensor reading
such as temperature, counting persons, GPS coordinates, IP
addresses and many more can be such contexts.

When applying anomaly detection algorithms in practice,
the context needs to be taken into account when creating
proper data views. Also, it is common that more than only
a single context has to be taken into account as shown later in
Section III.

3) Collective Anomalies: The last and most complex type
of anomalies are collective anomalies. Here, a combination of
many instances causes an anomaly, whereas each single one of
these contributing instances is not a (point) anomaly itself. Con-
sequentially, these kind of anomalies occur in datasets where
the instances have a certain relationship with each other. In
practice, log data or any sequentially collected datasets are often
collective anomaly detection tasks. Of course, the correlation
between this instances cannot be found automatically, since
there is an extremely large number of possible combinations.
Furthermore, in the unsupervised mode it is even impossible to
evaluate these combinations due to missing labels. This means
that similar to the contextual anomalies, proper data views
have to be generated, aggregating the data such that potential
correlating instances are grouped together. In almost all cases,
domain knowledge is required for the generation of a data view.

III. DATA VIEW GENERATION

In order to detect the relevant anomalies, the generation of
a proper data view is essential. Especially when unsupervised
anomaly detection should be applied, the data view genera-
tion preprocessing step influences, which kind of anomalies
are detected. For this reason, we focus in the following on
unsupervised anomaly detection.

A. Entity

As a first step, it needs to be determined for which entity
anomalies should be detected. In this context, an entity is
the event or item, to which an anomaly should refer to.
For example, if log data from electrical power consumption
measuring devices (“smart taps”) should be analyzed, multiple
entities could be defined. One could try to find anomalies
among the single devices, trying to answer the question whether
one device (the entity) uses an uncommon amount of energy.
Also, it is possible to aggregate the total consumption of all
devices within a specific time frame (another entity) and check
whether the whole building uses a suspicious amount of energy.
If user information is additionally available, the entity to be
modeled can also be a person. As we can see from this simple
example, the entity definition always implicitly answers the
question, which kind of anomaly should be focused on.

In some applications, where the analysis target is not clear
in the beginning, also multiple data views, which use different
entities each, can be used and analyzed in parallel [13].

B. Converting a contextual/collective task to a point anomaly
detection task

As already mentioned, no contextual or collective anomaly
detection algorithm exist in general for multidimensional data
and data views need to be used for converting the task
into a point anomaly detection problem. However, for one
dimensional data and the context time, time series analysis
methods could be used to detect anomalies, such as ARMA/
ARIMA [14] or artificial neural networks [15].

In practice, the context has to be integrated by data aggre-
gation and discretization. In particular, for the context time, it
is common to aggregate events for a specific time interval, for
example the power consumption within one hour. Of course,
multiple contexts may exist in parallel. Typically they are also
taken into account by aggregation and discretization (binning).
For example, to aggregate the total power consumption of
all devices within one room for one hour takes two contexts
into account, the time and the place. Also, it is possible to
aggregate the power consumption on a per-device basis, which
is illustrated in Figure 3. Here, the power consumption is binned
for hourly intervals and for different devices, marked as the
dark green intersection area of the hyperplanes. When applying
the unsupervised anomaly detection algorithm, the device ID is
then typically only used as an identifier, but not as a feature.

d
e
v
ic

e
 I
D

time [hours]

po
wer

 co
ns

um
pt

io
n 

[w
at

t]

Device X

Fig. 3. A data view can be generated by integrating the contexts time and
device ID. Here, the vertical gray slice represent an hourly bin and the green
hyperplane a particular device.

Dealing with collective anomaly detection problems is very
similar. For converting them into a point anomaly detection
problem, domain knowledge is used such that events corre-
sponding to a specific entity are aggregated. For example, if de-
fective electrical consumers cause a certain power consumption
pattern, this pattern can be coded as a feature for the anomaly



detection process. In sensor and log file data, this is often a
specific and known sequence of particular events.

When generating a data view for unsupervised anomaly
detection, it might also be a good decision in some cases to
neglect features, when it is known that they do not contribute
to a useful anomaly detection result. In general, features with
no entropy might cause the unsupervised anomaly detection
algorithm to fail. Due to the lack of labels, it is not possible that
the algorithm can perform a feature selection, such as implicitly
done by many supervised machine learning algorithms.

C. Normalization

For unsupervised anomaly detection, normalization of the
features plays an important role. If the scales of the features are
too different, algorithms will very likely tend to prefer specific
features. This is due to the fact that most algorithms are based
on distances and larger distances mean a smaller degree of
similarity. In some cases this behavior could be desired, but in
general, features should be normalized using the same scale. A
range transformation to the interval [0.0, 1.0] is very common
for numerical features. If categorical data is involved, it should
be transferred into a numerical scale when the data is ordinal.
For generic categorical data a distance of 0.0 and 1.0 could be
used, depending if they share the same category or not. Mixing
this kind of converted categorical distances with numerical data
might be error-prone. Keep in mind that the two distances of
0.0 and 1.0 separate the data into 2 disjoint subsets, because the
distance is always larger than the numeric distance. For dealing
with this issue, a weighting between numerical and categorical
data could be applied [3].

IV. COMPARING UNSUPERVISED ANOMALY DETECTION
ALGORITHMS

Although the generation of the data view is the most impor-
tant step for unsupervised anomaly detection, also the selection
of a proper algorithm requires some thoughts.

A. Types of Algorithms

In this paper, we cannot describe all available algorithms
in detail. Instead, we briefly explain a few important ones
and their main characteristics. Roughly, the algorithms may
be categorized in three main classes: (1) Nearest-neighbor
based methods, (2) Clustering-based methods and (3) Statis-
tical methods. Statistical methods can be sub-categorized into
parametric or non-parametric methods such as histograms [16],
Kernel-density estimation [17] or Gaussian Mixture Mod-
els [11]. Besides that, other methods based on classification
techniques exist, such as Support Vector Machines [18] or
autoencoders [10]. In the remainder of this section, we describe
some well-known techniques from the first two main classes
following [3].

For nearest-neighbor based approaches, the global k-NN
algorithm [19], [20], the well-known Local Outlier Factor
(LOF) [21], the Connectivity-Based Outlier Factor (COF) [22],
the Local Outlier Probability (LoOP) [23], the Local Correla-
tion Integral (LOCI) [24] as well as the Influenced Outlierness

(INFLO) [25] were selected. Please note that the k-NN algo-
rithm is global and all the remaining ones have been developed
for detecting local anomalies. LOF estimates a local density
around an instance and compares it with the densities of the k
neighbors. This leads to a spherical density estimation, which
has been replaced by a minimum spanning tree approach in
COF. INFLO is basically another LOF modification, trying to
improve some original shortcoming, which appears if clusters
of different densities are close to each other. LoOP on the
other hand works a little different – here, the local density
is estimated by a half-Gaussian distribution. Also, the result of
this algorithm is a probability instead of a score.

Among clustering based approaches, the Clustering-based
Local Outlier Factor (CBLOF) [26] and a modified version
uCBLOF [27] was chosen. The basic idea is to utilize k-
means clustering and use the distance from each instance to
the cluster center as an anomaly score. Since k-means might
lead to different results among multiple runs, its result is not
deterministic.

All algorithms are available within an open source anomaly
detection plug-in [27] of the RapidMiner [28] data mining
software, which has been used for evaluation in the following.

B. Evaluation and Results

Unfortunately, evaluation of unsupervised anomaly detection
algorithms is not straightforward. In practice, unsupervised
anomaly detection should be applied, when no labels are avail-
able. However, for a quantitative evaluation, labeling informa-
tion is required such that anomaly detection performance can be
measured. For this reason, 7 UCI machine learning datasets [29]
have been altered to fit the unsupervised anomaly detection
constraints: (1) Small amount of anomalies and (2) anomalies
are different from the majority. For applying unsupervised
anomaly detection, the labels are neglected, but for evaluation
they are used. The typical evaluation procedure is as follows:
First, the unsupervised anomaly detection algorithm scores
all the instances. Then, the instances are sorted according to
their anomaly score and finally, a threshold is shifted over all
instances, always computing the true positive rate and the false
positive rate, resulting in one Receiver Operating Characteristic
(ROC) curve. The area under this curve (AUC) serves then
as a quality measure for the algorithm. Please note that this
is different from classification, where typically a parameter is
altered to generate such a curve.

The modified datasets are publicly available and can be used
for further evaluations1. In particular, they contain medical
data, handwritten digits, data from space shuttle machinery,
satellite images as well as an intrusion detection dataset. All
the data has been preprocessed, features have been extracted
and semantically useful anomalies were defined.

The results of the experiments are listed in Table I. Some of
the algorithms also appear in the table as a slightly modified
version. For kth-NN, only the kth element is used instead of
an average over all neighbors. LOF is also evaluated with an

1See http://www.madm.eu/downloads



TABLE I
THE RESULTS OF THE UNSUPERVISED ANOMALY DETECTION ALGORITHMS USING THE INTERVAL 10 ≤ k ≤ 30. THE AVERAGE AUC AND THE STANDARD

DEVIATION IS LISTED FOR EACH DATASET. DUE TO ITS COMPLEXITY, LOCI CANNOT BE COMPUTED IN MOST CASES.

Alg. breast-cancer pen-local pen-global shuttle satellite annthyroid kdd99

k-NN 0.9783 0.9852 0.9852 0.9370 0.9703 0.6057 0.9714
±0.0009 ±0.0004 ±0.0071 ±0.0052 ±0.0008 ±0.0090 ±0.0039

kth-NN 0.9803 0.9815 0.9894 0.9348 0.9694 0.5854 0.9769
±0.0008 ±0.0038 ±0.0050 ±0.0048 ±0.0010 ±0.0083 ±0.0027

LOF 0.9806 0.9889 0.8244 0.5232 0.7118 0.6613 0.5727
±0.0030 ±0.0008 ±0.0863 ±0.0059 ±0.0309 ±0.0159 ±0.0168

LOF (UB) 0.9796 0.9887 0.8084 0.5279 0.7671 0.6728 0.5637
±0.0024 ±0.0005 ±0.0866 ±0.0074 ±0.0085 ±0.0106 ±0.0085

COF 0.9480 0.9425 0.7870 0.5282 0.6836 0.6619 0.5343
±0.0047 ±0.0128 ±0.1306 ±0.0084 ±0.0137 ±0.0134 ±0.0111

INFLO 0.9558 0.9827 0.7614 0.5064 0.7596 0.6671 0.5328
±0.0206 ±0.0028 ±0.0641 ±0.0141 ±0.0067 ±0.0113 ±0.0126

LoOP 0.9654 0.9818 0.6926 0.5056 0.7458 0.7013 0.5500
±0.0139 ±0.0082 ±0.0860 ±0.0041 ±0.0125 ±0.0103 ±0.0117

LOCI 0.9787 – 0.8877 – – – –
aLOCI 0.8105 0.8011 0.6889 0.9474 0.8324 0.6174 0.6552

±0.0883 ±0.0615 ±0.0345 ±0.0379 ±0.0372 ±0.0221 ±0.0458

CBLOF 0.2429 0.7546 0.2718 0.8981 0.5339 0.5628 0.7159
±0.1176 ±0.1129 ±0.0858 ±0.1444 ±0.0429 ±0.0392 ±0.2141

uCBLOF 0.9746 0.9476 0.9011 0.9826 0.9614 0.5349 0.9957
±0.0228 ±0.0090 ±0.0412 ±0.0224 ±0.0035 ±0.0226 ±0.0019

upper bound (UB) modification as introduced in the original
publication [21], where the maximum LOF score for multiple
different k’s was taken. aLOCI refers to a approximate version
of LOCI using quad trees for a fast nearest neighbor search.
For a fair evaluation, multiple typical values for k have been
evaluated. For the nearest-neighbor based methods, k was
selected such that 10 ≤ k ≤ 30. For the clustering based
methods, k refers to the number of clusters and the same
interval was used.

In general it can be concluded from the table as a major
finding that local unsupervised anomaly detection algorithms
typically fail on global anomaly detection tasks, such as kdd99
or the satellite dataset. Thus, it is very important to know
before deciding on an algorithm, whether local anomalies are
interesting or not with respect to the given task.

Another conclusion is that nearest-neighbor based methods
perform often better than clustering based algorithms. Also, the
deviation of the results is much smaller for nearest-neighbor
based algorithms, which indicates a lower sensibility to the
parameter setting. In practice, this means that if the dataset is
not too big, nearest-neighbor based algorithms should be pre-
ferred. Another advantage is their deterministic nature leading
to reproducible anomaly detection results. For very big datasets
where it is known that a global anomaly detection task needs
to be solved, utilizing a clustering-based approach might be
advantageous (c.f. shuttle and kdd99 dataset).

V. EVALUATION USING REAL-WORLD DATA

In the last section, a comparative evaluation was given in
order to describe the characteristics of the different algorithms
available. For this reason, no data view was generated or it was
rather performed prior and is already included in the dataset.

Now, a practical example is described briefly to illustrate the
data view generation and summarize the guidelines of this
paper.

As data source, power usage measurements from smart-tap
sensors are used. The data contains two contexts, the time of
the measurement and the ID of the device. Therefore, a data
view was generated where the entity refers to the power usage
of a single device. The resulting data view contains as features
the hour of the day, the day of the week and the amount of
power used in that hour. Additionally, the device ID of each
record is kept for reference but is not used as a feature for
anomaly detection.

For algorithm selection, we have now the choice to use a
local or a global anomaly detection algorithm. If we are more
interested in answering the question whether there is a power
consumption of a particular device deviating from the norm
in total, we should refer to a global algorithm. In contrast, if
we are more interested in finding anomalies with respect to
the local neighborhood such as unusual power consumption
within a specific daytime, a local algorithm might be preferred.
To this end, it was decided to use a local algorithm and LOF
was chosen. [Unfortunately the evaluation results using the
data had to be removed from this technical report for legal
reasons.]

VI. CONCLUSION

This paper serves as a generic guideline for detecting suspi-
cious behavior using unsupervised anomaly detection. It is out-
lined which tasks can be addressed with unsupervised anomaly
detection and why the generation of an appropriate data view is
essential. From a practical point of view, taking contexts as well
as collective events into account is described. After knowing



whether a local or global task should be solved, the quantitative
evaluation supports selecting a suitable algorithm. Finally, a
practical behavior analysis task complements the theoretical
sections and reveals abnormal power usage.

REFERENCES

[1] V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial Intelligence Review, vol. 22, no. 2, pp. 85–126, 2004.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys, vol. 41, no. 3, pp. 1–58, 2009.

[3] M. Goldstein, “Anomaly detection in large datasets,” PhD-Thesis, Uni-
versity of Kaiserslautern, München, Germany, 2 2014.

[4] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond, ser. Adaptive Com-
putation and Machine Learning. MIT Press, Cambridge, MA, 2002.

[5] K. Mehrotra, C. K. Mohan, and S. Ranka, Elements of Artificial Neural
Networks. Cambridge, MA, USA: MIT Press, 1997.

[6] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1988.

[7] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and Regression Trees, 1st ed. Chapman and Hall/CRC, 01 1984.

[8] M. M. Moya and D. R. Hush, “Network constraints and multi-objective
optimization for one-class classification,” Neural Networks, vol. 9, no. 3,
pp. 463–474, 1996.

[9] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C.
Platt, “Support vector method for novelty detection,” in Advances in
Neural Information Processing Systems 12 (NIPS). The MIT Press,
11 1999, pp. 582–588.

[10] S. Hawkins, H. He, G. J. Williams, and R. A. Baxter, “Outlier detection
using replicator neural networks,” in Proceedings of the 4th International
Conference on Data Warehousing and Knowledge Discovery (DaWaK
2000). London, UK: Springer-Verlag, 2000, pp. 170–180.

[11] B. Lindsay, Mixture Models: Theory, Geometry, and Applications, ser.
NSF-CBMS Regional Conference Series in Probability and Statistics.
Penn. State University: Institute of Mathematical Statistics, 1995.

[12] M. Rosenblatt, “Remarks on some nonparametric estimates of a density
function,” The Annals of Mathematical Statistics, vol. 27, no. 3, pp. 832–
837, 09 1956.

[13] M. Goldstein, S. Asanger, M. Reif, and A. Hutchinson, “Enhancing secu-
rity event management systems with unsupervised anomaly detection,” in
Proceedings of the 2nd International Conference on Pattern Recognition
Applications and Methods (ICPRAM 2013), INSTICC. SciTePress, 2
2013, pp. 530–538.

[14] P. Whittle, “The analysis of multiple stationary time series,” Journal of
the Royal Statistical Society. Series B (Methodological), pp. 125–139,
1953.

[15] S. L. Ho, M. Xie, and T. N. Goh, “A comparative study of neural network
and box-jenkins ARIMA modeling in time series prediction,” Computers
and Industrial Engineering, vol. 42, no. 2-4, pp. 371–375, 2002.

[16] M. Goldstein and A. Dengel, “Histogram-based outlier score (hbos): A
fast unsupervised anomaly detection algorithm,” in KI-2012: Poster and
Demo Track, S. Wölfl, Ed. Online, 9 2012, pp. 59–63.

[17] B. A. Turlach, “Bandwidth selection in kernel density estimation: A
review,” pp. 23–493, 1993.

[18] M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing one-class sup-
port vector machines for unsupervised anomaly detection,” in Proceedings
of the ACM SIGKDD Workshop on Outlier Detection and Description
(ODD ’13). New York, NY, USA: ACM Press, 8 2013, pp. 8–15.

[19] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for mining
outliers from large data sets,” in Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’00). New
York, NY, USA: ACM Press, 2000, pp. 427–438.

[20] F. Angiulli and C. Pizzuti, “Fast outlier detection in high dimensional
spaces,” in Principles of Data Mining and Knowledge Discovery, ser. Lec-
ture Notes in Computer Science, T. Elomaa, H. Mannila, and H. Toivonen,
Eds. Springer Berlin / Heidelberg, 2002, vol. 2431, pp. 43–78.

[21] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data. Dallas, Texas, USA:
ACM Press, 05 2000, pp. 93–104.

[22] J. Tang, Z. Chen, A. Fu, and D. Cheung, “Enhancing effectiveness of
outlier detections for low density patterns,” in Advances in Knowledge
Discovery and Data Mining, ser. Lecture Notes in Computer Science,
M.-S. Chen, P. Yu, and B. Liu, Eds. Springer Berlin / Heidelberg, 2002,
vol. 2336, pp. 535–548.

[23] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “Loop: Local outlier
probabilities,” in Proceeding of the 18th ACM Conference on Information
and Knowledge Management (CIKM ’09). New York, NY, USA: ACM
Press, 2009, pp. 1649–1652.

[24] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos, “Loci:
Fast outlier detection using the local correlation integral,” in Proceedings
of the 19th International Conference on Data Engineering. Los Alamitos,
CA, USA: IEEE Computer Society Press, 2003, pp. 315–326.

[25] W. Jin, A. Tung, J. Han, and W. Wang, “Ranking outliers using sym-
metric neighborhood relationship,” in Advances in Knowledge Discovery
and Data Mining, ser. Lecture Notes in Computer Science, W.-K. Ng,
M. Kitsuregawa, J. Li, and K. Chang, Eds. Springer Berlin / Heidelberg,
2006, vol. 3918, pp. 577–593.

[26] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local outliers,”
Pattern Recognition Letters, vol. 24, no. 9-10, pp. 1641–1650, 2003.

[27] M. Amer and M. Goldstein, “Nearest-neighbor and clustering based
anomaly detection algorithms for rapidminer,” in Proceedings of the 3rd
RapidMiner Community Meeting and Conferernce (RCOMM 2012), I. M.
Simon Fischer, Ed. Shaker Verlag GmbH, 8 2012, pp. 1–12.

[28] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler, “Yale:
Rapid prototyping for complex data mining tasks,” in Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD 2006). New York, NY, USA: ACM Press, 2006, pp.
935–940.

[29] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml


