
FastLOF: An Expectation-Maximization based
Local Outlier Detection Algorithm

Markus Goldstein
German Research Center for Artificial Intelligence (DFKI)

Markus.Goldstein@dfki.de

Abstract

Unsupervised anomaly detection techniques are be-
coming more and more important in a variety of ap-
plication domains such as network intrusion detection,
fraud detection and misuse detection. Today, unsuper-
vised anomaly detection techniques are mainly based
on quadratic complexity making it almost impossible to
apply them on very large data sets. In this paper, an
Expectation-Maximization algorithm is proposed which
computes the Local Outlier Factor (LOF) incrementally
and up to 80% faster than the standard method. An-
other advantage of FastLOF is that intermediate results
can be used by a system already during computation.
Evaluation on real world data sets reveal that FastLOF
performs comparable to the best outlier detection algo-
rithms although being significantly faster.

1 Introduction

Anomaly Detection is an area of machine learning,
which deals with the detection and rating of outliers
in data sets. According to its application domain, it is
also known as outlier detection, intrusion detection (in
the network security domain), behavioral analysis (in
forensics) as well as misuse or fraud detection [4]. The
latter two are often used with respect to the analysis of
(financial) transactions or monitoring of database sys-
tems in data leakage prevention (DLP) applications. As
a simple example in this context, accesses to a database
server can be logged and features of individual users
can be extracted and fed into an anomaly detection al-
gorithm. As a result, users behaving different than the
majority can be identified - for instance users requesting
an out of ordinary amount of data records or users mak-
ing requests at unusual times of the day helps to identify
potential fraudsters.

From a mathematical point of view, all of these ap-
plication domains have in common that normal behav-
ior should be modeled and abnormal occurrences need

to be detected. This leads to two simple assumptions on
which anomaly detection is based:

• anomalies only occur rarely in the data set and
• their features significantly deviate from normal

data.

In general, the definition of anomaly detection is of-
ten ambiguous. However, the survey paper [4] found
some categorization among all publications in this area.
One essential definition is determined with respect to
the separation of training and testing data: Supervised
anomaly detection uses a labeled training set with nor-
mal data and annotated anomalies. Usually, traditional
classificators (such as neural networks, SVMs or k-
nearest-neighbors) can be used in this area. Semi-
supervised anomaly detection is based on training data
containing normal data only and no anomalies. Im-
portant application domains in this scenario are intru-
sion detection and anti-virus applications, where nor-
mal operations are known but attacks and viruses are
unknown and should be detected. For semi-supervised
anomaly detection tasks, one-class classificators [11]
such as One-Class-SVMs or Anomaly Trees [15] can
be used. Finally, unsupervised anomaly detection is
the most flexible but also the most error prone anomaly
detection approach. In this context, no assumption of
the data is made, i.e. the data contains normal and
anomalous records and algorithms should separate the
two without prior training. Many practical applications
refer to this anomaly detection scenario, for example
the analysis of log files [9], data leakage prevention and
intrusion detection [13]. In this paper, also an unsuper-
vised algorithm FastLOF is proposed which is based on
LOF [3] and speeds up the computation significantly.

2 Related Work

2.1 Anomaly Detection

In unsupervised anomaly detection, there exist three
main techniques [4]: (1) Nearest-neighbor based, (2)

Clustering-based and (3) Statistical methods. Statisti-
cal methods, parametric as well as non-parametric ones,
mostly operate on univariate data whereas the few ex-
isting multivariate approaches are too compute intense
for large data sets. Clustering-based methods such as
the Clustering-based Local Outlier Factor (CBLOF) [7]
can deal very well with large datasets since complex-
ity can be low, for example O(NlogN) if k-means is
used. However, cluster-based methods have been found
to perform worse than nearest-neighbor based meth-
ods [1] and are therefore rarely applied.

The vast majority of algorithms used in practical
applications are nearest-neighbor based, for example
the global k-nn algorithm [14, 2] or the well-known
Local Outlier Factor (LOF) [3]. Many improvements
based on the LOF idea have been presented, such as
Connectivity-Based Outlier Factor (COF) [16], Local
Outlier Probability (LoOP) [10], the Influenced Outlier-
ness (INFLO) [8] or the parameter-free Local Correla-
tion Integral (LOCI) [12]. The common ground of all
these proposed methods is the determination of the k-
nearest-neighbors in advance. Except for LOCI, this is
the most compute intense part of the algorithms with
a complexity of O(N2). Attempts to reduce this com-
plexity are reviewed in Subsection 2.3.

2.2 Local Outlier Factor (LOF)

Since the Local Outlier Factor (LOF) introduced by
Breunig et al [3] in 2000 is used frequently in practi-
cal systems today and also is the basis for the FastLOF
algorithm, it is reviewed in the following.

In a first step, the k-nearest-neighbors according to
the euclidean distance are found, which is the most
compute-intense step. In general, all data instances have
to be compared with all other remaining ones leading to
a computational complexity of O(N2d), whereas d is
the dimension of the data.

In a second step, the Local Reachability Density
(LRD) is computed for all data points p based on the
set of k neighbors Nmin(p), such that

LRDmin(p) = 1/

∑

o∈Nmin(p)

reach distmin(p, o)

|Nmin(p)|

(1)

The LRD can be understood as the (inverse of) the
average reachability distance of the nearest neighbors.
In this context, the reachability distance reach distmin

is defined as the k-distance or the Euclidean distance of
the two objects, depending on which value is larger [3].

In a third step, the LOF value can be computed by

using the LRDs from the k-nearest-neighbors, such that

LOFmin(p) =

∑
o∈Nmin(p)

LRDmin(o)
LRDmin(p)

|Nmin(p)|
(2)

From the above equation we see that the LOF is a ra-
tio of the LRDs. A large LOF will be assigned if the
density of all neighbors is higher than the density of the
data instance p itself, indicating a possible outlier. On
the other hand, if the densities of the neighbors are ap-
proximately as high as of the instance itself, the result-
ing ratio will be close to one. A rule of thumb states,
that outliers have larger LOF scores than a threshold in
the range of 1.2 to 2.0, depending on the data.

2.3 Performance Improvement Attempts

In practice, more than 99% of the computation time
for LOF is spent with finding the nearest neighbors,
whose complexity is O(N2d). Computing the LRDs
and the LOF itself is only O(N). Simplifying the LRD
and LOF computation as suggested by Chiu et al [5] in
LOF’ and LOF” might thus not improve the total com-
putation time. The authors also suggested GridLOF as
an improvement by pruning away dense areas. How-
ever, it requires a good manual grid definition such that
it fits the data well, which is usually not feasible in prac-
tice. The authors of aLOCI [12] also suffer from this
problem and suggest to simply try out different grids
and use the best. Amer [1] introduced some imple-
mentational improvements to the original LOF includ-
ing a removal of duplicate data points from the data set
and a smart parallelization based on the number of di-
mensions but still with quadratic complexity. Two well-
known techniques for speeding up a k-nearest-neighbor
classifier also have been applied: Space Partitioning
and Locality Sensitive Hashing (LSH). Considering the
first, search-trees such as kd-trees [9] or X-trees are
used. Using trees as index structures has the advantage
of having fast k-NN query times, depending on the tree
down to O(logN). This comes at the cost for building
such a tree, for example O(N(d+ logN)) for a kd-tree.
The building time and the query time might be lower
than a full search, but this usually only holds for low
dimensions and a large number of samples (N >> 2d).
Another downside of using trees is the fact that usu-
ally the tree structure and thus all the data need to be
kept in memory. Due to this disadvantages, Locality
Sensitive Hashing (LSH) [6] is used very intense in the
last years for high dimensional data nearest neighbor
searches. The idea is that similar instances are mapped
into the same “buckets” such that the nearest-neighbor
search is only performed locally. LSH works very well
in dense areas but not in areas with low density. This

makes it ideal for retrieval tasks but not for anomaly de-
tection, where the opposite is needed: Precise matches
for low-dense areas and approximate matches for high-
dense areas.

3 FastLOF Algorithm

Our key observation that for LOF computation the
precise nearest neighbors are important for the outliers
and a good estimation is fair enough for normal data
points, the FastLOF algorithm is introduced. The basic
idea is inspired by using an Expectation-Maximization
approach: Instead of computing the nearest neighbors
first and then computing the LRD and LOF values, this
is done alternately. First, the data set is randomly di-
vided into data chunks. Then, for each data point, the
k-nearest-neighbor search is performed only within a
single chunk. Using this k-nearest-neighbor estimation,
LRD and LOF for all data points are computed as in
Equation 1 and 2. Then, the LOF values are used to
determine for which data points it makes most sense
to find better nearest neighbors determined by a thresh-
old θ. Instances with an LOF close to one will not be
processed further, instances with a higher LOF will be
used for searching better neighbors. The pseudo code
of FastLOF can be found in Algorithm 1. The alter-
nating calculation of the LOF scores of active instances
and the threshold based assignment of it is typical for
an expectation-maximization algorithm. Note that the
computation of LRD and LOF always have to be per-

Algorithm 1 The FastLOF algorithm
1: Input
2: D = d1, . . . , dn: data set with N instances
3: c: chunk size (e.g.

√
N)

4: θ: threshold for LOF
5: k: number of nearest neighbors
6: Output
7: LOF = lof1, . . . , lofn: estimated LOF scores
8: function FASTLOF(D, c, θ, k)
9: shuffle(D)

10: Group d1, . . . , dn in chunk1, . . . , chunkc
11: active← D
12: while new NN k found do
13: for all di ∈ active do
14: NN k

i ← findNN(di, chunkci)
15: Update NN k

x for new neighbor x in NN k
i

16: ci++

17: LRD ← LRD(D,NN k)
18: LOF ← LOF(D,NN k)
19: active← 0
20: for all di ∈ D do
21: if lofi > θ then
22: active← di
23: return LOF

Figure 1. FastLOF results for 2D test data
set. The size of the bubbles indicate the
LOF score.

formed for all instances, because newly found near-
est neighbors of outliers can also be new neighbors for
currently not investigated instances. This also ensures,
that the algorithm doesn’t miss an outlier accidentally,
which could have been declared as “normal” in a very
early iteration (cf Figure 2).

4 Experiments and Evaluation

For a first evaluation, a simple 2D data set was cre-
ated using a mixture of four Gaussians with 3000 in-
stances and 30 uniformly sampled outliers. Figure 1
illustrates the results for FastLOF using k = 10, chunk
size c =

√
N = 56 and θ = 1.1. A chunk size of√

N seems to be a good compromise between over-
head (LRD/LOF computations) and distance computa-
tion savings, whereas θ should be set to the interval
[1.0, 2.0] indicating the minimum outlier suspicion [3].
Compared to LOF, the scores are almost the same, but
the number of distance computations dropped by 95%
from 4,588,935 to 228,819. To be fair, FastLOF re-
quires additionally 336,000 computations for LRD and
LOF in this example. In Figure 2, two points are ex-
emplary chosen to visualize the FastLOF computation
over time. For comparison, also the LOF values have
been computed after each iteration such that the differ-
ence between LOF and FastLOF is clear. It can be ob-
served that only very few chunks are computed using
FastLOF for normal points (solid points at the bottom)
whereas all chunks are computed for outliers. Note that
LOF scores depend on the LRDs of the neighbors such
that the LOF and FastLOF scores can differ. When us-
ing real world data with higher dimensions, the com-
putational benefit even increases since the LRD and
LOF computations do not depend on d. FastLOF was

Dataset k θ LOF
AUC

FastLOF
AUC

FastLOF
Calcs

Best Alg. Best
AUC

Worst
AUC

Breast Cancer Wisconsin 10 1.10 0.9916 0.9882 18,5% INFLO 0.9922 0.8389
Pen-based 4-anomaly (local) 10 1.01 0.9878 0.9937 16.0% FastLOF 0.9937 0.7010
Pen-based 8-normal (global) 40 1.00 0.8864 0.9050 35.5% u-CBLOF 0.9923 0.6808

Table 1. Performance and run time comparison of FastLOF.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

L
O

F

iteration [chunk size 56]

Outlier LOF
Normal LOF

Normal FastLOF
Outlier FastLOF

Figure 2. Comparing LOF and FastLOF.
For normal points, FastLOF only com-
putes a fraction of the nearest neighbors
(solid circles). For outliers, the LOF is ap-
proximated well (top). In fact, LOF is only
computed once (chunk 56), but for direct
comparison it is shown here over time.

also evaluated on real world data from the UCI ma-
chine learning repository following the preprocessing
in [1, 10]. A detailed description of the data sets and the
calculation of the area under curve (AUC) performance
measure can be found in these publications. The results
of FastLOF in comparison with 8 other algorithms [1]
are summarized in Table 1. For our experiments we
used the optimal k as found in [1]. It can be seen
that FastLOF requires 65-81% less distance calculations
while having similar performance compared to LOF. On
the pen-based dataset with the local anomaly problem,
FastLOF even outperforms all other algorithms.

5 Conclusion

In this paper, FastLOF, an expectation-maximization
algorithm for estimating a local outlier factor has been
proposed. Similar detection performance is achieved
with significantly less computational effort. Further-
more, intermediate LOF results can be obtained already
during computation for systems where detection speed
is more important than final precision.

Acknowledgment
This work is part of ADEWaS, a project of Deutsche

Telekom Laboratories supported by German Research
Center for Artificial Intelligence (DFKI) GmbH.

References

[1] M. Amer. Comparison of unsupervised anomaly
detection techniques. Bachelor’s Thesis, 2011.
http://www.madm.eu/ media/theses/thesis-amer.pdf.

[2] F. Angiulli and C. Pizzuti. Fast outlier detection in high
dimensional spaces. volume 2431 LNCS, pages 43–78.

[3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander.
Lof: identifying density-based local outliers. SIGMOD
Rec., 29(2):93–104, 2000.

[4] V. Chandola, A. Banerjee, and V. Kumar. Anomaly de-
tection: A survey. ACM Comput. Surv., 41(3):1–58.

[5] A. L. M. Chiu and A. W. Fu. Enhancements on local
outlier detection. pages 298+, 2003.

[6] A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. pages 518–529, 1997.

[7] Z. He, X. Xu, and S. Deng. Discovering cluster-
based local outliers. Pattern Recognition Letters, 24(9-
10):1641 – 1650, 2003.

[8] W. Jin, A. Tung, J. Han, and W. Wang. Ranking out-
liers using symmetric neighborhood relationship. In Ad-
vances in KDD, volume 3918, pages 577–593. 2006.

[9] S. Kim, N. W. Cho, B. Kang, and S.-H. Kang. Fast
outlier detection for very large log data. Expert Syst.
Appl., 38(8):9587–9596, Aug. 2011.

[10] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek.
Loop: local outlier probabilities. In Proc. of the 18th
ACM CIKM, pages 1649–1652, 2009.

[11] M. Moya and D. R. Hush. Network constraints and
multi-objective optimization for one-class classifica-
tion. Neural Networks, 9(3):463–474, 1996.

[12] S. Papadimitriou, H. Kitagawa, and et al. Loci: Fast
outlier detection using the local correlation integral. Int.
Conf. on Data Engineering, 0:315, 2003.

[13] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection
with unlabeled data using clustering. In Proc. of ACM
CSS Workshop on DMSA, pages 5–8, 2001.

[14] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient al-
gorithms for mining outliers from large data sets. SIG-
MOD ’00, pages ”427–438”.

[15] M. Reif, M. Goldstein, A. Stahl, and T. Breuel.
Anomaly detection by combining decision trees and
parametric densities. In ICPR 2008. IEEE.

[16] J. Tang, Z. Chen, A. Fu, and D. Cheung. Enhancing ef-
fectiveness of outlier detections for low density patterns.
In Adv. in KDDM 2002, volume 2336, pages 535–548.

